Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Писарев Сергей Станиславович

Должность: Ректор Дата подписания: 0**Негосударственное образовательное учреждение высшего образования**

«Школа управления СКОЛКОВО» Уникальный программный ключ:

b9d7463b91f434da3d4dc1afa9a0cf32d3c58650

Утверждено

ктор С.С. Писарев

СКОЛКОВО

апреля 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Линейная алгебра

Направление подготовки	38.03.02 Менеджмент		
Квалификация выпускника	Бакалавр		
Образовательная программа	Управление и предпринимательство		
Форма обучения	Очная		
Рабочая программа дисциплины разработана	Антон Скубачевский, к.ф-м.н.		

Трудоемкость		1		Самостоят ельная	Форма контроля	Семестр/кв артиль
3.e.	часы	лекции	семинарск ие занятия	работа		
3	108	22	22	64	Экзамен	1/2

1. АННОТАЦИЯ ДИСЦИПЛИНЫ

В курсе "Линейная алгебра" изучаются матрицы и основные операции над ними. Развивается теория систем линейных уравнений, основы теории линейных пространств (базис, размерность, суммы и пересечения подпространств, двойственное пространство и связанные понятия). Вводятся понятия линейных отображения и преобразования, ядра и образа. Обсуждается перевод всех этих понятий на матричный язык.

Развивается теория линейного преобразования (оператора) линейного пространства. Изучаются инвариантные подпространства, собственные значения и собственные векторы, характеристический многочлен, вопросы, связанные с диагонализуемостью оператора. Далее доказывается теорема Гамильтона-Кэли.

Вводятся понятия билинейной формы, квадратичной формы, изучаются вопросы приведения матрицы такой формы к каноническому виду.

Вводится и изучается понятие евклидова (эрмитова) пространства, связанные с ним понятия (длина, ортогональная проекция, объём).

Изучаются линейные операторы и квадратичные формы на евклидовых пространствах, их приведение к каноническому виду. Описываются полярное и сингулярное разложение матрицы.

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины - ознакомление слушателей с основами алгебры и подготовка к изучению других математических, экономических и управленческих курсов курсов. В случае успешного освоения курса студенты будут:

знать

- операции с матрицами, методы вычисления ранга матрицы и детерминантов;
- теоремы о системах линейных уравнений Кронекера-Капелли и Фредгольма, правило Крамера, общее решение системы линейных уравнений;
- основные определения и теоремы о линейных пространствах и подпространствах, о линейных отображениях линейных пространств;
- координатную запись скалярного произведения, основные свойства самосопряженных преобразований;
- алгоритм Евклида для поиска наибольшего общего делителя; определение
- теоремы о системах линейных уравнений Кронекера-Капелли и Фредгольма, правило Крамера, общее решение системы линейных уравнений;
- основные определения и теоремы о линейных пространствах и подпространствах, о линейных отображениях линейных пространств;
- определения и основные свойства собственных векторов, собственных значений, характеристического многочлена;
- приведение квадратичной формы к каноническому виду, критерий Сильвестра;
- координатную запись скалярного произведения, основные свойства самосопряженных преобразований;
- как методы линейной алгебры применяются в разных областях науки, в частности, в анализе данных и машинном обучении

уметь

- производить матричные вычисления, находить обратную матрицу, вычислять детерминанты;
- решать системы линейных уравнений с помощью матричных методов (метод Гаусса, метод Крамер);
- находить численное решение системы линейных уравнений, исследовать системы линейных уравнений на совместность;

- оперировать с элементами и понятиями линейного пространства, включая основные типы зависимостей: линейные операторы, билинейные и квадратичные формы;
- находить собственные значения и собственные векторы линейных преобразований, приводить квадратичную форму к каноническому виду, находить ортонормированный базис из собственных векторов самосопряженного преобразования;
- оперировать с элементами и понятиями линейного пространства, включая основные типы зависимостей: линейные операторы, билинейные и квадратичные формы.

владеть

- общими понятиями и определениями, связанными с матричной алгеброй;
- геометрической интерпретацией систем линейных уравнений и их решений;
- понятиями линейного пространства, матричной записью подпространств и отображений;
- общими понятиями и определениями, связанными с матричной алгеброй.

Дисциплина направлена на развитие следующих компетенций и их индикаторов:

Код компетенц ии	Формулировка компетенции и/или ее индикатора (ов)
ОПК-1.	Способен решать профессиональные задачи на основе знаний (на промежуточном уровне) экономической, организационной и управленческой теории
ОПК-1-1.	Знает основы математической, экономической, социальной и управленческой теории и использует знания для решения профессиональных задач
ОПК-1-2.	Формулирует профессиональные задачи, используя понятийный аппарат математической, экономической, социальной и управленческой наук
ОПК-1-3.	Применяет инструментарий экономико-математического моделирования для постановки и решения профессиональных задач выявления причинно-следственных связей и оптимизации деятельности объекта управления

3. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

	D	Трудоемкость (час.) по видам учебных занятий				
Название раздела/темы	Всего часов	К	Самостояте			
		Всего	Лекции	семинары	льная работа	
Тема 1. Ранг матрицы	6	2	2		4	
Тема 2. Системы линейных уравнений	8	4	2	2	4	

Тема 3. Аксиоматика линейного пространства	6	2	2		4
Тема 4. Векторы линейного пространства	8	4	2	2	4
Тема 5. Подпространства	6	2	2		4
Тема 6. Линейные отображения линейных пространств и линейные преобразования линейного пространства	8	2		2	6
Тема 7. Матрицы линейного отображения и линейного преобразования для конечномерных пространств	8	4	2	2	4
Тема 8. Инвариантные подпространства линейных преобразований	8	4	2	2	4
Тема 9. Нахождение собственных значений и собственных векторов линейного преобразования конечномерного линейного пространства	8	4	2	2	4
Тема 10. Линейные формы	8	2		2	6
Тема 11. Билинейные и квадратичные формы	6	2	2		4

Тема 12. Приведение квадратичной формы к каноническому виду	6	2		2	4
Тема 13. Аксиоматика евклидова пространства	8	4	2	2	4
Тема 14. Ортогонализации в евклидовом пространстве	6	2		2	4
Тема 15. Линейные преобразования евклидова пространства	8	4	2	2	4
Итого	108	44	22	22	64

Тема 1. Ранг матрицы

Ранг матрицы. Теорема о базисном миноре. Теорема о ранге матрицы.

Тема 2. Системы линейных уравнений

Системы линейных уравнений. Метод Гаусса. Теорема Кронекера–Капелли. Фундаментальная система решений и общее решение однородной системы линейных уравнений. Общее решение неоднородной системы. Теорема Фредгольма.

Тема 3. Аксиоматика линейного пространства.

Аксиоматика линейного пространства.

Линейная зависимость и линейная независимость систем элементов в линейном пространстве. Базис и размерность.

Тема 4. Векторы линейного пространства

Координатное представление векторов линейного пространства и операций с ними. Матрица перехода от одного базиса к другому. Изменение координат при изменении базиса в линейном пространстве.

Тема 5. Подпространства

Подпространства и способы их задания в линейном пространстве. Сумма и пересечение подпространств. Формула размерности суммы подпространств. Прямая сумма.

Тема 6. Линейные отображения линейных пространств и линейные преобразования линейного пространства

Линейные отображения линейных пространств и линейные преобразования линейного пространства. Ядро и образ линейного отображения. Операции над линейными преобразованиями. Обратное преобразование. Линейное пространство линейных отображений (преобразований).

Тема 7. Матрицы линейного отображения и линейного преобразования для конечномерных пространств

Операции над линейными преобразованиями в матричной форме. Изменение матрицы линейного отображения (преобразования) при замене базисов.

Тема 8. Инвариантные подпространства линейных преобразований

Собственные векторы и собственные значения. Собственные подпространства. Линейная независимость собственных векторов, принадлежащих различным собственным значениям.

Тема 9. Нахождение собственных значений и собственных векторов линейного преобразования конечномерного линейного пространства

Характеристическое уравнение, его инвариантность. Оценка размерности собственного подпространства. Условия диагонализуемости матрицы линейного преобразования. Теорема Гамильтона–Кэли.

Тема 10. Линейные формы

Сопряженное (двойственное) пространство. Биортогональный базис.

Тема 11. Билинейные и квадратичные формы

Их координатное представление в конечномерном линейном пространстве. Изменение матриц билинейной и квадратичной форм при изменении базиса.

Тема 12. Приведение квадратичной формы к каноническому виду

Приведение квадратичной формы к каноническому виду методом Лагранжа. Теорема (закон) инерции для квадратичных форм. Знакоопределенные квадратичные формы. Критерий Сильвестра. Приведение квадратичной формы к каноническому виду элементарными преобразованиями.

Тема 13. Аксиоматика евклидова пространств

Неравенство Коши-Буняковского. Неравенство треугольника. Матрица Грама и ее свойства.

Тема 14. Ортогонализации в евклидовом пространстве

Процесс ортогонализации в евклидовом пространстве. Переход от одного ортонормированного базиса к другому. Ортогональное дополнение подпространства, ортогональное проектирование на подпространство.

Тема 15. Линейные преобразования евклидова пространства

Сопряженные преобразования, их свойства. Матрица сопряженного преобразования.

4. ОЦЕНОЧНЫЕ СРЕДСТВА И ПРИМЕРЫ ЗАДАНИЙ ДЛЯ ОЦЕНКИ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

4.1 Текущий контроль

Текущий контроль состоит из письменных домашних заданий и контрольных работ во время которых необходимо решить несколько задач и ответить на вопросы. Примеры заданий представлены в разделе 4.3.

4.2 Промежуточная аттестация

Промежуточная аттестация проводится в форме письменного экзамена продолжительностью 4 академических часа.

Оценка		Критерий
5 Отлично	10	Студент продемонстрировал всесторонние, систематизированные, глубокие знания и умение уверенно применять их на практике при решении конкретных задач, свободное и безупречное обоснование принятых решений

	1	T
	9	Студент продемонстрировал всесторонние, систематизированные, глубокие знания и умение уверенно применять их на практике при решении конкретных задач, правильное обоснование принятых решений
4 Хорошо	8	Студент продемонстрировал всесторонние, систематизированные, знания и умение применять их на практике при решении конкретных задач, правильное обоснование принятых решений, но при оформлении работы допущена некоторая небрежность, не влияющее на качество изложения теоретического материала и представление решения практической задачи
	7	Студент твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе на теоретические вопросы некоторую неполноту, которую может устранить с помощью дополнительных вопросов преподавателя
3 Удовлетворительно	6	Студент знает основной материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности, которые может устранить с помощью дополнительных вопросов преподавателя
	5	Студент знает основной материал, по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении практических задач неполноту и неточности, некоторые из которых может устранить только с помощью наводящих вопросов преподавателя
2 Неудовлетворительно	4	Студент продемонстрировал знание отдельных тем, привел правильные формулировки некоторых базовых понятий, в изложении материала нарушена логическая последовательность; практические задачи может решать по предложенным в рамках дисциплины образцам, не демонстрируя их творческой адаптации под конкретную ситуацию
	3	Студент не продемонстрировал знание материала, есть значительные ошибки в формулировках базовых понятий, в изложении материала нарушена логическая последовательность; практические задачи решены с ошибками
	1,2	Студент не знает основного содержания тем дисциплины, допускает грубые ошибки в

	формулировках основных понятий и/или не решил практическую задачу
--	---

4.3 Примеры заданий

Примеры заданий для текущего контроля и промежуточной аттестации

- 1. Пусть A и B две квадратные матрицы одного размера. Обязаны ли совпадать ранги матриц AB и BA?
- 2. Запишите общее решение уравнения x1+x2+x3+x4=0 в виде суммы частного решения и произвольной линейной комбинации фундаментальной системы решений.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Литература

- 1. Бурмистрова, Е. Б. Линейная алгебра : учебник и практикум для вузов / Е. Б. Бурмистрова, С. Г. Лобанов. Москва : Издательство Юрайт, 2024. 421 с. (Высшее образование). ISBN 978-5-534-15839-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/535849 (дата обращения: 21.05.2024).
- 2. Линейная алгебра и аналитическая геометрия : учебник и практикум для вузов / Е. Г. Плотникова, А. П. Иванов, В. В. Логинова, А. В. Морозова ; под редакцией Е. Г. Плотниковой. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 416 с. (Высшее образование). ISBN 978-5-534-18887-5. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/555026 (дата обращения: 21.05.2024).
- 3. Малугин, В. А. Линейная алгебра для экономистов. Учебник, практикум и сборник задач: для вузов / В. А. Малугин, Я. А. Рощина. Москва: Издательство Юрайт, 2024. 478 с. (Высшее образование). ISBN 978-5-534-02976-5. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/536498 (дата обращения: 21.05.2024).

Дополнительная

Беклемишев, Д. В. Курс аналитической геометрии и линейной алгебры: учебник для вузов / Д. В. Беклемишев. — 19-е изд., стер. — Санкт-Петербург: Лань, 2022. — 448 с. — ISBN 978-5-8114-9223-7. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/189312 (дата обращения: 29.05.2024). — Режим доступа: для авториз. пользователей.

5.2 Электронные образовательные ресурсы

Материалы дисциплины размещены в LMS: https://l.skolkovo.ru/login/index.php

5.3 Профессиональные базы данных и информационные справочные системы (при наличии)

нет

6. ЛИЦЕНЗИОННОЕ И СВОБОДНО РАСПРОСТРАНЯЕМОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Операционная система Simple Linux, браузер Yandex браузер, антивирусное ПО Calmantivirus;

Свободно распространяемое ПО, в том числе отечественного производства:

Офисный пакет Libre Office, Okular PDF Reader, 7-Zip Архиватор, GIMP Редактирования фотографий, Inkscape Векторная графика, Blender 3D графика, Kdenlive Видеоредактор, Audacity Аудиоредактор, VLC Медиаплеер, Thunderbird Почтовый клиент, Flameshot Создание скриншотов

7.МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебная аудитория для проведения занятий лекционного типа, оснащенная мультимедийным оборудованием, учебной мебелью, доской или со стенами с маркерным покрытием.

Учебная аудитория для проведения занятий семинарского типа, оснащенная мультимедийным оборудованием, учебной мебелью, доской или со стенами с маркерным покрытием.

Аудитория (коворкинг) для самостоятельной работы оснащенная учебной мебелью, ноутбуками.

Материально-техническое обеспечение аудиторий представлено на официальном сайте https://bbask.ru/sveden/objects/